Detection and Fine 3D Pose Estimation of Texture-less Objects in RGB-D Images

Tomáš Hodaň¹, Xenophon Zabulis², Manolis Lourakis², Šťěpán Obdržálek¹, Jiří Matas¹

¹ Center for Machine Perception, CTU in Prague, CZ

² Institute of Computer Science, FORTH, Heraklion, GR

1st October 2015, Hamburg

Texture-less Objects in Robotics

Detection and accurate localization of texture-less objects is commonly required in personal and industrial robotics

Problem Formulation

Given a database of training RGB-D images annotated with 3D poses, **detect all instances of known objects** in a test image and **estimate their 3D poses**

Test RGB-D image

Training RGB-D images annotated with 3D poses

Related Work

1. Template matching methods

Hinterstoisser (ICCV 2011), Rios-Cabrera (ICCV 2013), Cai (ICVS 2013)

2. Shape matching methods

Damen (BMVC 2012), Tombari (ICCV 2013), Drost (CVPR 2010), Choi (IROS 2012)

3. Methods based on dense features

Sun (ECCV 2010), Gall (PAMI 2011), Brachmann (ECCV 2014)

4. Deep learning methods

Wohlhart (CVPR 2015), Held (arXiv 2015), Krull (arXiv 2015)

- Multi-scale sliding window
- Efficient cascade-style evaluation of each location
- The window has a **fixed size**, the same as the templates
- Stochastic optimization used to **refine the 3D pose**

- Multi-scale sliding window
- Efficient cascade-style evaluation of each location
- The window has a **fixed size**, the same as the templates
- Stochastic optimization used to **refine the 3D pose**

O(LT) = complexity of an exhaustive template matching L = the number of sliding window locations T = the number of training templates

- Multi-scale sliding window
- Efficient cascade-style evaluation of each location
- The window has a **fixed size**, the same as the templates
- Stochastic optimization used to **refine the 3D pose**

- Multi-scale sliding window
- Efficient cascade-style evaluation of each location
- The window has a **fixed size**, the same as the templates
- Stochastic optimization used to **refine the 3D pose**

Objectness Filter

- Based on the number of depth edges
- The number of depth edges in a window is required to be at least 30% of the minimum from the training templates
- For false negative rate = 0, 60-90% of locations are pruned
- Other window proposal methods (e.g. Edge-boxes) are being considered

Detected depth edges

Number of detection candidates: 1.7 x 10⁸

Density of detection candidates detection candidate = (tpl. id, x, y, scale)

- Voting procedure based on hashing descriptors of trained triplets of reference points located on a grid
- Each triplet is described by surface normals and depth differences
- Up to N templates with the most votes are selected per location Typically: N = 100, 8 bins for surface normal orientation, 5 bins for depth difference, i.e. 5²8³ = 12800 hash table bins

Sample triplets

Triplet description

Density of detection candidates detection candidate = (tpl. id, x, y, scale)

Multimodal Template Verification

• A sequence of tests evaluating consistency of:

- a. Object size and the measured depth
- b. Surface normals
- c. Image gradients
- d. Depth
- e. Color (HSV)

Evaluated on learnt feature points

Based on: Hinterstoisser et al., "Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes", ICCV, 2011

Img. gradients

Surface normals

Number of detections: 44

Density of detection candidates detection candidate = (tpl. id, x, y, scale)

11

Depth

Color

Learnt feature points in different

modalities

- Detection candidates with locally highest score are retained
- The 3D poses associated with the detected templates are used as **initial poses** in the pose refinement procedure

Rendering of the 3D pose associated with the detected template Number of detections: 1

Density of detection candidates detection candidate = (tpl. id, x, y, scale)

- The rough initial 3D pose is refined using a hypothesize and test scheme based on **Particle Swarm Optimization** (PSO)
- PSO stochastically evolves a population of candidate poses over multiple iterations
- Candidate poses are evaluated by comparing their rendered depth images to the input depth image (using a cost function measuring similarity in **depth**, **surface normals and depth edges**)
- Pose refinement using PSO is less sensitive to local minima compared to ICP

Details in: Zabulis, Lourakis and Koutlemanis, "3D Object Pose Refinement in Range Images", Intl Conf. on Computer Vision Systems, ICVS, 2015

Recognition Rate

- Evaluation on the **dataset of Hinterstoisser** [1]:
 - 15 texture-less objects, 1200 RGB-D test images for each
 - **Object localization**: detect the given object and estimate its pose
- The recognition rate (recall) of our method is **comparable to SOTA**

Sequence	Our method	LINEMOD++	LINEMOD	Drost et al.		200
1. Ape	93.9	95.8	69.4	86.5		
2. Benchvise	99.8	98.7	94.0	70.7		ST.
3. Bowl	98.8	99.9	99.5	95.7		
4. Box	100.0	99.8	99.1	97.0		
5. Cam	95.5	97.5	79.5	78.6		
6. Can	95.9	95.4	79.5	80.2		10
7. Cat	98.2	99.3	88.2	85.4		
8. Cup	99.5	97.1	80.7	68.4		3
9. Driller	94.1	93.6	81.3	87.3		Nº.
10. Duck	94.3	95.9	75.9	46.0	TOT 2 TOTOL AND AND	100
11. Glue	98.0	91.8	64.3	57.2		
12. Hole punch	88.0	95.9	78.4	77.4		
13. Iron	97.0	97.5	88.8	84.9		NOT A
14. Lamp	88.8	97.7	89.8	93.3		
15. Phone	89.4	93.3	77.8	80.7		
Average	95.4	96.6	83.0	79.3		

Recognition rates [%] (LINEMOD and LINEMOD++ are methods from [1]) Sample 3D pose estimations

[1] Hinterstoisser et al., "Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes," ACCV, 2012

[2] Drost et al., "Model globally, match locally: Efficient and robust 3d object recognition," CVPR, 2010

Scalability and Speed

- Time complexity is sub-linear in the number of templates
- When the number of loaded templates increased 15 times, the average recognition time increased only less than 3 times:

• 0.75 s per VGA frame (9 image scales) for a single known object

Robotic Assembly Application

- An arm with a gripper is assigned the task of picking up electrical fuses at arbitrary locations in its workspace and inserting them into the sockets of corresponding fuse boxes
- Detection and fine 3D pose estimation is crucial for this task

Thank you!