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Texture-less Objects in Robotics
Detection and accurate localization of texture-less objects 
is commonly required in personal and industrial robotics



Given a database of training RGB-D images annotated with
3D poses, detect all instances of known objects in a test 
image and estimate their 3D poses
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Problem Formulation

Training RGB-D images
annotated with 3D poses

Test RGB-D image
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...
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Related Work

1. Template matching methods
Hinterstoisser (ICCV 2011), Rios-Cabrera (ICCV 2013),
Cai (ICVS 2013)

2. Shape matching methods
Damen (BMVC 2012), Tombari (ICCV 2013), Drost (CVPR 2010), 
Choi (IROS 2012)

3. Methods based on dense features
Sun (ECCV 2010), Gall (PAMI 2011), Brachmann (ECCV 2014)

4. Deep learning methods
Wohlhart (CVPR 2015), Held (arXiv 2015), Krull (arXiv 2015)



● Multi-scale sliding window
● Efficient cascade-style evaluation of each location
● The window has a fixed size, the same as the templates
● Stochastic optimization used to refine the 3D pose
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The Proposed Method
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The Proposed Method
● Multi-scale sliding window
● Efficient cascade-style evaluation of each location
● The window has a fixed size, the same as the templates
● Stochastic optimization used to refine the 3D pose
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= complexity of an exhaustive template matching

L = the number of sliding window locations
T = the number of training templates
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The Proposed Method
● Multi-scale sliding window
● Efficient cascade-style evaluation of each location
● The window has a fixed size, the same as the templates
● Stochastic optimization used to refine the 3D pose
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= complexity of an exhaustive template matching

L = the number of sliding window locations
T = the number of training templates



● Multi-scale sliding window
● Efficient cascade-style evaluation of each location
● The window has a fixed size, the same as the templates
● Stochastic optimization used to refine the 3D pose
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The Proposed Method
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= complexity of an exhaustive template matching

L = the number of sliding window locations
T = the number of training templates



Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● Based on the number of depth edges
● The number of depth edges in a window is required to be at least 30% 

of the minimum from the training templates
● For false negative rate = 0, 60-90% of locations are pruned
● Other window proposal methods (e.g. Edge-boxes) are being considered
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Objectness Filter
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Number of detection candidates: 1.7 x 108

Detected depth edges



Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● Voting procedure based on hashing descriptors of trained triplets of 
reference points located on a grid

● Each triplet is described by surface normals and depth differences
● Up to N templates with the most votes are selected per location 

Typically: N = 100, 8 bins for surface normal orientation, 5 bins for depth difference, i.e. 5283 = 12800 hash table bins
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Hashing

Number of detection candidates: 5.2 x 105

Sample triplets Triplet description
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Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● A sequence of tests evaluating consistency of:
a. Object size and the measured depth
b. Surface normals
c. Image gradients
d. Depth
e. Color (HSV)
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Multimodal Template Verification

Number of detections: 44

Learnt feature 
points in different 
modalities

Img. gradients Surface normals

Depth Color

} Evaluated on learnt feature points
Based on: Hinterstoisser et al., “Multimodal templates for real-time detection 
of texture-less objects in heavily cluttered scenes”, ICCV, 2011
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Density of detection candidates
detection candidate = (tpl. id, x, y, scale)

● Detection candidates with locally highest score are retained
● The 3D poses associated with the detected templates are used as 

initial poses in the pose refinement procedure
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Non-maxima Suppression

Number of detections: 1

Rendering of the 
3D pose associated 
with the detected 
template
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● The rough initial 3D pose is refined using a hypothesize and test 
scheme based on Particle Swarm Optimization (PSO)

● PSO stochastically evolves a population of candidate poses over 
multiple iterations

● Candidate poses are evaluated by comparing their rendered depth 
images to the input depth image (using a cost function measuring 
similarity in depth, surface normals and depth edges)

● Pose refinement using PSO is less sensitive to local minima 
compared to ICP

Details in: Zabulis, Lourakis and Koutlemanis, ”3D Object Pose Refinement in Range Images”, Intl Conf. on 
Computer Vision Systems, ICVS, 2015
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Fine 3D Pose Estimation
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● Evaluation on the dataset of Hinterstoisser [1]:
○ 15 texture-less objects, 1200 RGB-D test images for each
○ Object localization: detect the given object and estimate its pose

● The recognition rate (recall) of our method is comparable to SOTA
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Recognition Rate

[1] Hinterstoisser et al., “Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered 
scenes,” ACCV, 2012
[2] Drost et al., “Model globally, match locally: Efficient and robust 3d object recognition,” CVPR, 2010

Recognition rates [%]
(LINEMOD and LINEMOD++ are methods from [1])

Sample 3D pose estimations



● Time complexity is sub-linear in the number of templates
● When the number of loaded templates increased 15 times, the average 

recognition time increased only less than 3 times:

● 0.75 s per VGA frame (9 image scales) for a single known object
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Scalability and Speed



● An arm with a gripper is assigned the task of picking up electrical fuses 
at arbitrary locations in its workspace and inserting them into the 
sockets of corresponding fuse boxes

● Detection and fine 3D pose estimation is crucial for this task

16

Robotic Assembly Application
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Thank you!


