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Abstract

Real-time scalable detection of texture-less objects in 2D
images is a highly relevant task for augmented reality ap-
plications such as assembly guidance. The paper presents a
purely edge-based method based on the approach of Damen
et al. (2012) [5]. The proposed method exploits the recent
structured edge detector by Dollár and Zitnick (2013) [8],
which uses supervised examples for improved object outline
detection. It was experimentally shown to yield consistently
better results than the standard Canny edge detector. The
work has identified two other areas of improvement over the
original method; proposing a Hough-based tracing, bringing
a speed-up of more than 5 times, and a search for edgelets in
stripes instead of wedges, achieving improved performance
especially at lower rates of false positives per image. Exper-
imental evaluation proves the proposed method to be faster
and more robust. The method is also demonstrated to be
suitable to support an augmented reality application for as-
sembly guidance.

1 Introduction

Object-centric augmented reality (AR) is constrained by lim-
itations of the available methods to describe shapes and de-
tect objects. Current approaches rely mainly on either well
textured objects or fiducial markers and thus struggle when
having to deal with the many objects that have little tex-
ture or no suitable surfaces that allow to attach markers to
them. This type of challenging objects does include many
useful ones, from hand tools to furniture and machine com-
ponents, for which the most sensible solution would be to
describe them by their unaltered shape, e.g. to use a repre-
sentation amenable to the objects’ outline.

Furthermore, in many circumstances, the ability to train
objects in-situ just before being able to detect them is not
only appealing from the operational point of view, but po-
tentially important so that any such system can work any-
where and instantly after training. This calls for methods
that are fast enough to work without the luxury of offline
processing.

Working with shape outlines is difficult. The feature rep-
resentation stage is relatively fragile because it typically re-
lies on edge detection. From the signal processing perspec-
tive, edge detection is challenging as determining the end of
a shape is often a difficult decision to take under realistic
illumination and background conditions. Since this is usu-
ally done by binary classification (as in e.g. the Canny edge
detector), and at one scale, edge detection can become less
repeatable than salient regions used to anchor visual descrip-
tors when objects are well textured. This calls for a more
careful selection of outline representation.
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Figure 1: An application of the proposed object detection method
for augmented reality guidance. Input images (a). Object detections
(b), color coding as in Figure 7. Each training view of an object
defines a 3D pose. For detected objects, the 3D pose is used to
render assembly hints (c) by augmenting them via re-coloring.

In this paper, we consider the use of a data driven out-
line determination method, the structured edge detector [8].
Besides, we enhance the prior work of Damen et al. [5] by
a more efficient and more accurate tracing of constellations.
The result is a faster and more robust method for detection
of texture-less objects in 2D images. We also show how the
method can be used to support AR guidance for an assembly
task (Figure 1).

The paper is organized as follows. We first review rele-
vant works in Section 2 before presenting the prior work [5]
and the proposed improvements in Section 3. Experimental
evaluation is presented in Section 4, where the improved
performance as a result of the proposed modifications is ex-
perimentally demonstrated. We finally explain how the pro-
posed method can be used for AR guidance in Section 5,
before concluding the paper in Section 6.

2 Related Work

The superiority of the shape description for detection of
texture-less objects over the traditional texture-based de-
scription has been explored by Tombari et al. [14].

Many methods represent the shape by relative relation-
ships between edge features, either within local neighbour-
hoods or globally over the whole image, to create features
for classification. However, the most of the methods are not
aimed at real-time operation which is a crucial requirement
for AR applications.

For example, Carmichael and Hebert [3] employ weak clas-

2015 IEEE International Symposium on Mixed and Augmented Reality Workshops

978-1-4673-8471-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMARW.2015.23

81



sifiers using neighbourhood features at various radii for de-
tecting wiry objects like chairs and ladders. This results in
a time consuming process. Chia et al. [4] enable lines and el-
lipses to vote for the object’s centre using their position and
scale, similar to Hough transform voting. Similarly, Opelt
et al. [13] use the standard boosting to classify contour frag-
ments which then vote for the object’s centre. Danielsson et
al. [7] learn consistent constellations of edgelet features over
categories of objects from training views. The most consis-
tent pair of edgelets in the learnt model is selected as the
aligning pair and exhaustively matched against all pairs in
the test image. Extension of the pairs of edgelets to multi-
ple edgelets forming a fully connected clique was proposed
by Leordeanu et al. [12].

Most of the above approaches target object category
recognition, while others aim at instance detection of rigid
objects. An early approach by Beis and Lowe [1] detects the
object’s straight edges and groups them if co-terminating or
parallel. For co-terminating lines, for example, the descrip-
tor is made up of the angles between edges and their relative
lengths. This reduces the search complexity at the expense
of limiting the type of objects that can be handled.

More recent works, like Ferrari et al. [9], use a represen-
tation based on a network of contour segments. Recogni-
tion is achieved by finding the path in the network which
best resembles the model derived from hand drawn con-
tours. Starting from one base edgelet, that matches a corre-
sponding model edgelet, the contour is iteratively extended
based on the relative orientations and distances between test
edgelets and the model’s edgelets. Extending the contour
and backtracking are iterated until the contour matching is
completed or the path comes to a dead end. When breaks
in the edge map cannot be bridged, partial contours are de-
tected and combined in a hypothesis estimation post process.
Although these methods demonstrate impressive detection
performance, they do not target fast teach-and-use opera-
tion and are geared towards single object detection, with
complexity scaling linearly when multiple objects need to be
detected.

Scalability to multiple objects was considered in earlier
works by the use of indexing and geometric hashing, similar
in form to the library look-up that we use in our method.
Examples include the early works by Lamdan and Wolfson
[15] and Grimson [10]. More recently, Cai et al. [2] proposed
a template matching approach which achieves a sub-linear
complexity in the number of trained objects by hashing edge
measurements, generating a small set of template candidates
for each sliding window location.

Techniques aimed for fast detection get closer to our aim
of in-situ teach-and-use. Hinterstoisser et al. [11] repre-
sents patches by histograms of dominant orientations fol-
lowed by efficient bitwise matching which enables detection
of one object within 80 ms, using 1600 reference views per
object. However, the representation is not rotation- or scale-
invariant (hence the need for a large number of reference
views) and the complexity increases with multiple objects,
with detection time increasing to 333 ms for 3 objects.

Many of the shape-based methods above do rely on the
edge maps which are commonly computed via standard edge
detectors such as Canny. This is mainly due to their rela-
tively high speed of computation but also due to the lack of
alternatives. Some methods like [11] consider multi-channel
edge detection to improve the reliability of detected edges.
But it could be argued that the edge maps needed for ob-
ject detection are those that favour the object’s outline and
prominent features while eschewing clutter and noise. A fast

supervised method for object outline detection has been pro-
posed by Dollár and Zitnick [8]. The result is a cleaner edge
map which also has a probabilistic representation of the edge
response. Despite the desirable property of better outline
detection, the method has been tested only on individual
images. An evaluation on a sequence of images or at least
multiple viewpoints of the same object captured by a moving
camera is required to show its stability and thus suitability
for our AR scenario.

3 Proposed Method

3.1 Bristol Multi-Object Detector

In [5], a scalable method for learning and detection of
texture-less objects is proposed. The method is shape-based,
view-variant, and importantly, can work in a teach-and-use
manner and in real-time. It has also been shown to be scal-
able to multiple views of tens of objects.

Given a binary edge map, the method samples edgelets
E = {e1, e2, . . . , en} of a fixed length. Each edgelet ei is
represented by its midpoint and orientation. The method
introduces the notion of fixed paths to tractably select and
describe constellations of edgelets. A fixed path is a pre-
defined sequence of angles Θ = (θ0, · · · θm−2), where the
first angle θ0 is defined relative to the first edgelet orienta-
tion. For every fixed path, the method only selects edgelet
constellations with relative positions that satisfy the angles
of the fixed path.

Each constellation C = (i1, i2, . . . , im), where ij is the
index of the j-th edgelet of the constellation, is described by

f(C) = (φ1, ..., φm−1, δ1, ..., δm−2),

which specifies the relative orientations and distances be-
tween the consecutive edgelets in the constellation. φk =
̂ek, ek+1 is the relative orientation of consecutive edgelets,

and δk = g(ek+1, ek+2)/g(ek, ek+1) is the relative distance
between edgelets, where g(ei, ej) is the distance between
midpoints of edgelets ei and ej . The descriptor is similarity-
invariant, and the matching method is tolerant to a moder-
ate level of occlusion. When descriptors are matched, the
detection candidates are verified by using the oriented dis-
tance transform to confirm the object’s presence and avoid
hallucinations. We refer to this method as the Multi-Object
Detector (MOD), and build on its latest version 1.2 [6].

We identify three areas of improvement in MOD. First,
the method relies on a binary edge map whose quality is
crucial. The quality is affected by undesirable edges that
result from shadows or fine textures within the object or in
its vicinity. Moreover, missing edges that represent the ob-
ject’s shape would reduce the number of constellations for a
given fixed path. Second, the method defines a tolerance in
the tracing angles, allowing higher displacement for further
edges and thus higher geometric deviation. Third, when
tracing a constellation, the method searches for the next
edgelet through all the edgelets in the image exhaustively.
This calls for a more efficient approach. The proposed im-
provements are described in the following paragraphs and
illustrated in Figure 2.

3.2 Object Outline Detection

To address the first problem, we use the state of the art
structured edge detector (SED) by Dollár and Zitnick [8].
It is a supervised edge detector trained on manually labeled
ground-truth boundaries for naturalistic scenes. This train-
ing emphasizes object outlines, avoids shadows and generally
achieves better consistency under different background and
lighting conditions.
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Figure 2: Proposed modifications to [5]. Top: The supervised edge
detector achieves a higher edge repeatability and has a lower sen-
sitivity to fine textures. Middle: Tracing in wedges is replaced by
tracing in stripes, yielding less geometrically deviated constellations.
Bottom: A Hough-based representation is used for fast retrieval of
edgelets along a certain direction, avoiding the exhaustive search.

Structured random forests are trained from hand-labeled
examples, where a 16×16 image patch is used to classify
whether the center pixel is an edge pixel. The ensemble is
used to provide a probabilistic estimate for the classification
outcome. Results of the supervised edge detector prove its
ability to remove noise in the edge map that results from tex-
tured clutter or within-object fine texture. The emphasis of
the detector on object outlines is highly relevant to texture-
less objects, where the outline formulates the majority of
edges in the object’s shape. Though previously trained and
tested on images of natural scenes, we evaluate the ability of
SED to extract the object’s outline in interior and industrial
scenes, with input from a moving camera.

3.3 Tracing Section

In the original method, for each angle θi, a tolerance of ε ra-
dians is allowed when tracing constellations, i.e. the edgelets
are searched for in a wedge. As the tolerance is introduced
in the tracing angles, a larger displacement is allowed in
edgelets that are further apart (Figure 2 middle). To make
the allowed displacement independent of distance, we pro-
pose to search for edgelets along a stripe of a fixed width.
We expect this modification to also remove the preference
for further edges in forming constellations. In order to com-
pensate for the sampling error and thus to minimize the miss
rate in the search for edgelets, the width of the stripe is set
such that it reflects the edgelet length.

3.4 Hough-based Constellation Tracing

In the original method, the relative orientations and dis-
tances of all edgelet pairs are calculated in the pre-processing
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Figure 3: A Hough-based representation for efficient directional
search of edgelets. The midpoints of the edgelets from the image
space (left) correspond to a sinusoid in the Hough space (right).
Each bin in the Hough space represents a line m in the image space
and stores a list of edgelets whose midpoints pi lie on that line. The
points in the list are sorted by di, a signed distance from c to pi
(di = t · pi, where t is a unit vector in the defined direction of the
line m).

step. The constellations are then traced in a brute-force
manner. To search for the next edgelet in a given direction,
all pairs starting with the last edgelet are checked, i.e. the
complexity is O(n), where n is the number of edgelets.

To efficiently search for edgelets in a given direction,
we propose a Hough-based representation (Figure 3). The
Hough space is parametrized by r, a signed distance from
the origin to the point c which is the closest point on the
corresponding line, and α, the angle between the horizon-
tal axis and the line connecting the origin and the point c.
Each bin of the quantized Hough space represents a line mα,r

in the image space and stores a list Lα,r of edgelets whose
midpoints lie on this line. The edgelets in the list are sorted
by the signed distance d from c to their midpoints. To re-
trieve edgelets lying in the given direction from an edgelet
with midpoint pi, one just needs to get the list Lα,r from
the proper bin in the Hough space and locate the insertion
position of di in the sorted list to determine edgelets lying
on the required half-line. The complexity of the search for
edgelets lying on a half-line is thus O(log |Lα,r|), where typ-
ically |Lα,r| � n in natural images.

To retrieve edgelets lying in a stripe of a defined width, we
collect edgelets from the half-lines included within the search
stripe. The Hough-based representation is constructed such
that in every column αi, each edgelet is recorded only once.
A list of unique edgelets within the search stripe can be
thus obtained by visiting several neighbouring bins in the
column αi.

The memory requirement of the Hough-based representa-
tion is nBα. The average-case complexity of its construc-
tion is O(nBα +BαBrmk), where Bα and Br are the num-
ber of quantization bins of parameters α and r respectively.
O(nBα) is the complexity of recording n edgelets, each in
Bα bins. O(BαBrmk) is the complexity of sorting the lists
Lα,r in all bins of the quatized Hough space, where m is the
average list length and k is the maximum displacement of an
element from its sorted position. When the edgelets are first
sorted by y and x coordinate of their midpoints (this order
can be achieved at a little cost when taking it into consid-
eration during detection of edgelets), and then mapped into
the Hough space, the resulting lists Lα,r are automatically
sorted by the distance d. Due to the quantization errors of α
and r, the order can be sometimes violated. But since the el-
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ements are expected to be close to their sorted positions (the
maximum displacement k is expected to be small), the lists
can be sorted efficiently by e.g. the insertion sort algorithm.

4 Experimental Evaluation

The proposed modifications were evaluated quantitatively
on the publicly available Bristol Tools dataset [5], which
includes 1364 training and 1219 test images (annotated with
2D ground truth bounding boxes) of 30 texture-less objects.
All images were rescaled to the resolution of 320 × 240 px,
in line with the results presented in [5]. A detection was
considered true positive if the overlap (i.e. intersection over
union) of its bounding box with a ground truth bounding
box of the same object was at least 50%. The detection
time limit was set to 3 s.1

First, we evaluate the performance when using different
edge detectors (Canny vs. SED) as well as using different
tracing sections (wedge vs. stripe). To obtain a binary edge
map, we applied a non-maxima suppression to the edge prob-
ability map produced by SED, and threshold it by t = 0.05
(i.e. pixels with the edge probability higher than t were con-
sidered as edge points). The thresholds of the Canny edge
detector were set to 0.05 and 0.2, as in MOD v1.2 [6]. The
length of edgelets was set to 8 px, the width of the trac-
ing stripe to 9 px (i.e. 4 px on each side of the tracing ray),
and the tolerance in the tracing angle defining the span of
the wedge was set to ε = 0.06 rad. The minimum and the
maximum distance between two constellation edgelets was
required to be 5 and 150 px respectively. To construct the
Hough-based representation, the quantization step was set
to 0.5◦ for α and 1 px for r, totaling 360 bins for α and 400
for r (400 px is the diagonal length of an image with resolu-
tion 320×240 px). As in MOD v1.2, only one fixed path was
used: Θ = (−0.807,−2.173, 2.868, 2.737), where the angles
are in radians.

For detection, the whole codebook including the trained
constellations needs to be loaded into RAM. In order to meet
the memory limit of the used computer (4GB of RAM),
we did not trace all possible constellations during training,
i.e. we did not bounce on all edgelets lying in the tracing
section. Instead, we randomly sampled 5 edgelets to be
bounced on. This is likely not to be the optimal solution
and a better, perhaps a deterministic approach is needed.

As shown in Figure 4, edges detected by SED produced
consistently better results than edges detected by Canny.
We attribute the increase in performance to the fact that
SED is specifically trained to detect object boundaries which
are supposed to contain most of the shape information of
texture-less objects. Tracing in the stripe section yielded a
higher detection rate (DR), especially for a lower false posi-
tives per image (FPPI). The DR/FPPI curves were obtained
by changing the threshold of the detection cost defined in [5].

In principle, the MOD v1.2 is represented in this eval-
uation by the method which uses the Canny edge detec-
tor and the wedge tracing. However, the Hough-based
search of constellation edgelets was used in the evaluated
method (edgelets from the half-lines spanning the given
wedge were collected), whereas MOD v1.2 performs the ex-
haustive search. Another difference is that we did not greed-
ily remove the corresponding edgelets in the test image once
they were assigned to a verified hypothesis, i.e. we did not
invalidate them for subsequent detections. Instead, we col-

1The evaluation was done on a virtual machine with a lim-
ited computational power. We believe that the 3 s corresponds to
approximately 1 s when running on a standard computer.
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Figure 4: DR/FPPI for different edge detectors (Canny vs. SED)
and different tracing sections (wedge vs. stripe). The curves were
generated by changing the detection cost threshold.
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Figure 5: DR/FPPI evaluation of different values of k (the number
of closest edgelets considered when tracing a constellation in the
detection stage – one of these edgelets was randomly picked and
bounced on).

lected all verified hypotheses and performed a non-maxima
suppression in the end.

Example detection results in test images from the Bristol
Tools dataset can be found in Figure 7. The last row shows
typical failure cases caused by the presence of several thin
objects in the dataset which tend to match with any parallel
lines in the test scene. An improvement of the verification
function is necessary to disambiguate these cases.

Next, we investigate the effect of considering only k closest
edgelets from the tracing stripe, when one of these edgelets
is randomly picked and bounced on in the detection stage.
For tracing the training constellations, we bounced on max-
imum of 50 closest edgelets in this experiment. As shown in
Figure 5, there is no big gain when k > 5. This is poten-
tially an important finding since considering only 5 closest
edgelets is supposed to increase the robustness to clutter
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Figure 6: Average time of the proposed Hough-based constellation
tracing vs. the brute-force approach used in the original method.

and noticeably reduce the number of possible constellations.
More detailed investigation of this observation is a subject
of our future work.

The Hough-based directional search of edgelets brought
5.2× speed-up when compared to the exhaustive search over
all edgelets in the test image (Figure 6). This speed-up was
measured on the Bristol Tools dataset which contains images
with only mild clutter. We presume the difference will be
even more significant in the case of complex scenes in which
a large number of edgelets is present.

As shown in [5], the time complexity of the method is sub-
linear in the number of learnt objects. With an optimized
and parallelized code (construction of the Hough-based rep-
resentation, tracing of constellations, and also hypothesis
verification can be all parallelized efficiently), we will be in-
terested in evaluating the increase in the number of objects
that can be handled in real-time. The impact of the scene
complexity, especially of the level of background clutter, is
another subject of our future study.

5 Augmented Reality - Assembly Guidance

With the ability to detect and locate objects using their
shape alone, it is possible to develop various useful aug-
mented reality applications. Detection of previously learnt
objects can not only allow recovering information details
about these objects, such as their identity and technical
specifications, but also, with their localization in the im-
age, it is possible to make spatial connections. This can be
useful in e.g. assembly tasks.

When 3D models of the objects are available and their
individual views are related to corresponding 3D viewpoints,
it is possible to do further augmentations such as colour
changes to highlight relevant objects or their parts.

Figure 1 presents an example application of texture-less
object detection for augmented reality guidance. In this
case, the objects have very little texture and are essentially
described by their shape’s outline. Our method is able to
locate the known objects and colour them in a way that
provides guidance for assembly — the various objects are
coloured in a way that intuitively indicates what goes where.

6 Conclusion

A method for efficient texture-less object detection has been
presented and its suitability for augmented reality guidance
has been demonstrated. The method builds on the approach
of Damen et al. [5] which it improves in several ways. First,

it exploits the structured edge detector which is experimen-
tally shown to achieve consistently better results when com-
pared to the standard Canny edge detector. Second, the
edgelet constellations are traced in stripes instead of wedges.
The resulting constellations are less geometrically deviated,
yielding a higher detection rate, especially at lower rates of
false positives per image. Last but not least, the proposed
method uses a Hough-based representation for efficient di-
rectional search of edgelets, achieving more than 5 times
speed-up in constellation tracing.
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Figure 7: Example detection results in test images from the Bristol
Tools dataset. The last row shows typical failure cases caused by
the presence of several thin objects in the dataset which tend to
match with any parallel lines. Centers of the detected edgelets are
visualized by dots, connections of the traced edgelet constellations
are drawn in blue, constellations which generated detections are
highlighted in green, and edges of the detected object views are
drawn in red.
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