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Abstract. A pose of a rigid object has 6 degrees of freedom and its full

knowledge is required in many robotic and scene understanding appli-

cations. Evaluation of 6D object pose estimates is not straightforward.

Object pose may be ambiguous due to object symmetries and occlu-

sions, i.e. there can be multiple object poses that are indistinguishable

in the given image and should be therefore treated as equivalent. The

paper defines 6D object pose estimation problems, proposes an evalu-

ation methodology and introduces three new pose error functions that

deal with pose ambiguity. The new error functions are compared with

functions commonly used in the literature and shown to remove cer-

tain types of non-intuitive outcomes. Evaluation tools are provided at:

https : //github.com/thodan/obj pose eval

1 Introduction

Object localization and detection are among the core problems of computer

vision. Traditional methods work with 2D images and typically describe pose

of the detected object by a bounding box, which encodes 2D translation and

scale [1,2]. There is no information about the object orientation and only a

rough notion of the object distance. A pose of a rigid object has 6 degrees of

freedom, 3 in translation and 3 in rotation, and its full knowledge is required in

many robotic and scene understanding applications.

Although methods trying to extract a richer pose description from 2D images

exist [3,4], the task can be simplified if depth images are used as additional input

data. RGB-D – aligned color and depth – images which concurrently capture

appearance and geometry of the scene can be obtained by e.g. Kinect-like sensors

that are common in robotic applications.

Evaluation of 6D object pose estimates is not straightforward. Object pose

can be ambiguous due to object symmetries and occlusions, i.e. there can be

multiple object poses that are indistinguishable in the given image and should

be therefore treated as equivalent (Fig. 1). This issue has been out of focus in the

work on 6D object pose estimation. In evaluation of pose estimates described

by 2D bounding boxes, the indistinguishable poses are treated as equivalent

implicitly since all are described by the same bounding box.
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Fig. 1. Different poses of the cup (a-b) cannot be distinguished if the handle is not
visible due to self-occlusion (c). Pose of the pen (d) is ambiguous if its discriminative
ends are occluded by another objects (e).

The main contribution of this paper are three new functions to measure error

of an estimated 6D object pose w.r.t. the ground truth 6D object pose. All three

are invariant under pose ambiguity, i.e. they treat the indistinguishable poses

as approximately equivalent. The Visible Surface Discrepancy (eVSD) measures

misalignment over the visible surface of the object model and is thus inherently

invariant under pose ambiguity. The Average and the Maximum Corresponding

Point Distance (eACPD, eMCPD) measure misalignment over the entire model

surface when considering all indistinguishable poses, which are assumed known.

We define two 6D object pose estimation problems in Sec. 2, propose an

evaluation methodology in Sec. 3, review the commonly used pose error functions

and introduce the new functions in Sec. 4, present experimental comparison of

the pose error functions in Sec. 5, and conclude in Sec. 6.

2 6D Object Pose Estimation Problems

A 6D object pose estimator is assumed to report its predictions on the basis of

two sources of information. First, at training time, it is provided with a training

set T = {T1, T2, . . . , Tn} for a set of rigid objects represented by identifiers O =

{1, 2, . . . , n}. The training data Ti may have different forms, e.g. a 3D object

model or a set of RGB or RGB-D images, where each image shows one object

instance in a known 6D pose. Second, at test time, it is provided with a single

test RGB or RGB-D image I, which might be accompanied with information

about objects that are visible in the image. The goal is to estimate a single 6D

pose for each visible object instance.

Prior information about the object presence in I distinguishes two problems:

6D Localization Problem

Training input: A training set T , as described above.

Test input: An image I and a multiset LI = {o1, o2, . . . , ok}, where oi ∈ O
are identifiers of the objects present in I. Note: Multiple in-

stances of an object may be present in I, i.e. the same identifier
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may be multiple times in LI .

Test output: A sequence EI = ((o1, P̂1, s1), (o2, P̂2, s2), . . . , (ok, P̂k, sk)),

where P̂i is an estimated 6D pose of an instance of object oi ∈ O
with confidence si ∈ (0, 1]. Note: |EI | = |LI |, the size of the out-

put is fixed by the input.

6D Detection Problem

Training input: A training set T , as described above.

Test input: An image I. No prior information about the object presence is

provided, there may be j ≥ 0 instances of each object o ∈ O.

Test output: A sequence EI = ((o1, P̂1, s1), (o2, P̂2, s2), . . . , (om, P̂m, sm)),

where P̂i is an estimated 6D pose of an instance of object oi ∈ O
with confidence si ∈ (0, 1]. Note: The size of the output |EI |
depends on the estimator.

The 6D localization problem is a generalization of the problem defined by

Hinterstoisser et al. [5], where the goal is to detect a single instance of a given

object per image, i.e. |LI | = 1.

In evaluation of the 6D localization problem, if there are for some object

more estimated poses than the specified number j of instances, which is given

by LI , only j estimated poses with the highest confidence s are considered.

3 Evaluation Methodology

We propose the following methodology to evaluate performance of a 6D object

pose estimator in the problems defined above. It includes an algorithm that

determines the estimated poses that are considered correct (Sec. 3.1), a definition

of pose error functions (described later in Sec. 4), and a definition of performance

scores (Sec. 3.2).

In this paper, a pose of a rigid 3D object is represented by a 4 × 4 matrix

P = [R, t;0, 1], where R is a 3× 3 rotation matrix, and t is a 3× 1 translation

vector. An object is represented by a model M, which is typically a mesh given

by a set of points in R3 and a set of triangles. Matrix P transforms a 3D point

xm in the model coordinate system to a 3D point xc in the camera coordinate

system: xc = Pxm. The 3D points are represented in homogeneous coordinates.

3.1 Determination of Pose Correctness

For each test image I, there is a ground truth set GI = {(o1, P̄1), (o2, P̄2), . . . ,

(ok, P̄k)}, where P̄i is the ground truth pose of an instance of object oi ∈ O.

Determination of estimated poses that are considered correct is formulated as

finding a maximal matching in a bipartite graph B = ((EI , GI), F ), where F is
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a set of edges that connect the ground truth poses GI with matchable estimated

poses EI .

An estimated pose (o, P̂, s) ∈ EI is considered matchable with a ground

truth pose (o′, P̄) ∈ GI , if it satisfies the necessary matching condition: o = o′

∧ e(P̂, P̄;M, I) < t, where t is a threshold of a pose error function e (Sec. 4).

As in the PASCAL VOC challenge [6], estimated poses EI are greedily assigned

to the matchable ground truth poses GI in the order of decreasing confidence s.

This results in the maximal matching M = {(x̂1, x̄1), (x̂2, x̄2), . . . , (x̂l, x̄l)} ⊆ F ,

where x̂i ∈ EI and x̄i ∈ GI , and no two edges share an endpoint. The set of

correct poses is defined as Ec
I = {x̂ ∈ EI : ∃x̄ ∈ GI : (x̂, x̄) ∈ M}, i.e. an

estimated pose is considered correct if it is matched to some ground truth pose.

Alternatively, one may not prioritize matchable pairs based on the confi-

dence s, since they all satisfy the necessary matching condition, and maximize

the number of matches instead. This would correspond to finding a maximum

cardinality matching in the bipartite graph B, which can be done using e.g. the

Hopcroft-Karp algorithm [7]. However, if the threshold t is set judiciously, the

two matching approaches lead to nearly identical results and thus we prefer the

simpler greedy approach.

3.2 Performance Score

Following Hinterstoisser et al. [5], we suggest to measure performance in the 6D

localization problem by the Mean Recall (MR), calculated as the mean of the

per-object recall rates:

MR = avg
o∈O

∑
I

∣∣{(o′, P̂, s) ∈ Ec
I : o′ = o

}∣∣∑
I

∣∣{(o′, P̄) ∈ GI : o′ = o
}∣∣ , (1)

where I ∈ I and I is a set of test images.

In the 6D detection problem, we suggest to measure performance by the Mean

Average Precision (MAP), calculated as the mean of the per-object Average

Precision (AP) rates:

MAP = avg
o∈O

avg
r∈So

∑
I

∣∣{(o′, P̂, s) ∈ Ec
I : o′ = o, s ≥ r

}∣∣∑
I

∣∣{(o′, P̂, s) ∈ EI : o′ = o, s ≥ r
}∣∣ , (2)

where So =
⋃

I{s : (o, P̂, s) ∈ Ec
I} is a set of confidence values of estimated

poses that are considered correct. The AP rate effectively summarizes the shape

of the Precision-Recall curve and we suggest to calculate it as in the PASCAL

VOC challenge from 2010 onwards [1] – by the average of the precision observed

each time a new positive sample is recalled, i.e. a correct pose is estimated.

Both scores, MR and MAP, depend on parameters of the necessary matching

condition, which include the threshold t, the pose error function e and parameters
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of e. The scores can be calculated for several interesting parameter settings or

integrated over a reasonable range of settings. Sec. 4.5 discusses the parameters

in more detail.

4 Measuring Error of Estimated Pose

This section introduces the notion of indistinguishable poses (Sec. 4.1) and the

requirement on the pose error functions to be invariant under pose ambiguity

(Sec. 4.2). It reviews the common pose error functions (Sec. 4.3), proposes new

functions that are invariant under pose ambiguity (Sec. 4.4), and discusses the

condition for matching of an estimated pose to the ground truth pose (Sec. 4.5).

4.1 Indistinguishable Poses

The set of poses of modelM that are ε-indistinguishable from pose P in image I

is defined as: [P]M,I,ε = {P′ : d(vI [PM], vI [P′M]) ≤ ε}, where vI [M] ⊆ M is

the part of model surface that is visible in I (i.e. the part that is not self-occluded

or occluded by some other object), d is a distance between surfaces, and ε is a

tolerance that controls the level of detail to be distinguished. A possible choice

for d is the Hausdorff distance [8], which measures distance of surface shapes

(appearance could be also considered if M is colored).

When object pose is ambiguous due to object symmetries or occlusions, the

set of ε-indistinguishable poses [P]M,I,ε contains various object poses, not only

the poses that are nearly identical to P. Note that [P]M,I,ε is an equivalence class

of P iff ε = 0 (for ε > 0, the binary relation defining the set is not transitive).

An object pose P′ ∈ [P]M,I,ε is related to P by a transformation T ∈
TP,M,I,ε : P′ = TP, which consists of a translation and a rotation. The set

TP,M,I,ε represents partial ε-symmetries [8], which describe repetitions of the

visible surface part vI [PM] on the entire surface of PM. It is allowed that

vI [PM] ∩ vI [P′M] 6= ∅, i.e. the matching surface patches can overlap. The

partial ε-symmetries can be found by e.g. the method of Mitra et al. [9].

4.2 Invariance to Pose Ambiguity

The error e(P̂, P̄;M, I) ∈ R+
0 of an estimated 6D object pose P̂ w.r.t. the ground

truth pose P̄ of object model M in image I is required to be invariant under

pose ambiguity, i.e. ∀P̂′ ∈ [P̂]M,I,ε,∀P̄′ ∈ [P̄]M,I,ε : e(P̂′, P̄′) ≈ e(P̂, P̄), where

the equality is approximate due to the tolerance ε. A pose error function e that

satisfies this property is said to be ambiguity-invariant. Note: This property is

required because a 6D object pose estimator makes predictions only from a single

input image. There is no tracking or any other source of information which the

estimator could use to remove the pose ambiguity.
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4.3 Common Pose Error Functions

This section reviews the common pose error functions and discusses their prop-

erties. None of these functions that operate in 3D space are ambiguity-invariant.

Average Distance of Model Points The most widely used pose error func-

tion is the one proposed by Hinterstoisser et al. [5]. It is used for evaluation in

e.g. [10,11,12,13,14,15,16]. The error of the estimated pose P̂ w.r.t. the ground

truth pose P̄ of object modelM that has no indistinguishable views is calculated

as the average distance to the corresponding model point:

eADD(P̂, P̄;M) = avg
x∈M

∥∥∥P̄x− P̂x
∥∥∥

2
. (3)

If the model M has indistinguishable views, the error is calculated as the

average distance to the closest model point:

eADI(P̂, P̄;M) = avg
x1∈M

min
x2∈M

∥∥∥P̄x1 − P̂x2

∥∥∥
2
. (4)

Object model M is considered to have indistinguishable views if ∃P,∃P′,
∃C : d(vC [PM], vC [P′M]) ≤ ε ∧ f(P,P′) ≥ ρ, where vC [M] ⊆ M is the

part of model surface that is visible from camera C (i.e. the part that is not

self-occluded), the function d measures a distance between two surfaces (as in

Sec. 4.1), and ρ is the minimum required distance f between the poses (this

is required because there are many nearly identical poses for which the surface

distance is below ε).

Although it became a common practise, values of eADD and eADI should not

be directly compared. This is because eADI yields relatively small errors even for

views that are distinguishable, and is thus more permissive than eADD (eADI is

in fact the lower bound of eADD). The objects evaluated with eADI are therefore

advantaged. Moreover, neither eADD or eADI is ambiguity-invariant (see Sec. 5).

Translational and Rotational Error Model-independent pose error functions

are used in [16,17,18]. The error of the estimated pose P̂ = (R̂, t̂) w.r.t. the

ground truth pose P̄ = (R̄, t̄) is measured by the translational (eTE) and the

rotational error (eRE):

eTE(t̂, t̄) =
∥∥t̄− t̂

∥∥
2
, (5)

eRE(R̂, R̄) = arccos
(

(Tr(R̂R̄−1)− 1) / 2
)
. (6)

The error eRE is given by the angle from the axis–angle representation of

rotation [19](p23). Neither eTE nor eRE is ambiguity-invariant. As discussed in
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Sec. 4.5, fitness of object surface alignment is the main indicator of object pose

quality, model-dependent pose error functions should be therefore preferred.

Complement over Union A popular way how to measure accuracy of detec-

tion and segmentation methods in 2D domain is to calculate the Intersection

over Union score [1]:

sIOU(B̂, B̄) = area(B̂ ∩ B̄) / area(B̂ ∪ B̄), (7)

where B̂ and B̄ is the estimated and the ground truth 2D region respectively.

The related cost function is the Complement over Union:

eCOU(B̂, B̄) = 1− area(B̂ ∩ B̄) / area(B̂ ∪ B̄). (8)

Depending on the task, B̂ and B̄ can be rectangular regions (given by bound-

ing boxes) or segmentation masks. For evaluation of 6D object pose estimates,

the 2D regions can be obtained by projection of the object model M in the

estimated pose P̂ and the ground truth pose P̄. Such pose error function is

ambiguity-invariant, but since it operates in the projective space, it provides

only a weak information about fitness of the object surface alignment. An-

other possibility is to extend eCOU to work with 3D volumes. Such function

can be made ambiguity-invariant (by e.g. taking the minimum over the sets of

ε-indistinguishable poses), but requires well-defined 3D models with hole-free

surfaces. We define a more practical extension of eCOU in Sec. 4.4.

4.4 Ambiguity-invariant Pose Error Functions

We propose three pose error functions that are ambiguity-invariant. The Visible

Surface Discrepancy is of the highest practical relevance since it is inherently

ambiguity-invariant.

Errors Based on Corresponding Point Distance If the sets [P̂]M,I,ε and

[P̄]M,I,ε are available, we propose to calculate the average or the maximum of

distances between corresponding points of modelM for each pose pair (P̂′, P̄′) ∈
Q = [P̂]M,I,ε × [P̄]M,I,ε, and take the minimum as the pose error:

eACPD(P̂, P̄;M, I, ε) = min
(P̂′,P̄′)∈Q

avg
x∈M

∥∥∥P̄′x− P̂′x
∥∥∥

2
, (9)

eMCPD(P̂, P̄;M, I, ε) = min
(P̂′,P̄′)∈Q

max
x∈M

∥∥∥P̄′x− P̂′x
∥∥∥

2
. (10)

The pose error eACPD is an extension of eADD. It can be used to evaluate

results for objects with or without indistinguishable views, and thus allows their
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impartial comparison, which is not the case of eADD and eADI (Sec. 4.3). The

pose error eMCPD might be more relevant for robotic manipulation, in which the

maximum surface deviation strongly indicates the chance of a successful grasp.

Determination of the sets [P̂]M,I,ε and [P̄]M,I,ε complicates the evaluation

process, especially because [P̂]M,I,ε needs to be determined during evaluation.

Hence, we suggest to prefer the Visible Surface Discrepancy in general. However,

eACPD and eMCPD can be still useful when the sets are easy to obtain, i.e. when

object symmetries can be enumerated and occlusions (including self-occlusions)

do not cause any ambiguity.

Visible Surface Discrepancy To achieve the ambiguity-invariance while avoid-

ing the need to determine the sets [P̂]M,I,ε and [P̄]M,I,ε, we propose to calculate

the error only over the visible part of the model surface. The Visible Surface Dis-

crepancy is defined as follows:

eVSD(P̂, P̄;M, I, δ, τ) = avg
p∈V̂ ∪V̄

c(p, D̂, D̄, τ), (11)

where V̂ and V̄ is a 2D mask of the visible surface of M̂ = P̂M and M̄ = P̄M
respectively (Fig. 2). D̂ and D̄ are distance images obtained by rendering of M̂
and M̄. A distance image stores at each pixel p the distance from the camera

center to the closest 3D point xp on the model surface that projects to p1. δ is

a tolerance used for estimation of the visibility masks, and c(p, D̂, D̄, τ) ∈ [0, 1]

is the matching cost at pixel p:

c(p, D̂, D̄, τ) =

{
d / τ if p ∈ V̂ ∩ V̄ ∧ d < τ

1 otherwise,
(12)

where d = |D̂(p) − D̄(p)| is the distance between the surfaces of M̂ and M̄
at pixel p, and τ is the misalignment tolerance that limits the allowed range

of d. The cost c linearly increases from 0 to 1 as d increases to τ . This allows

to distinguish well aligned surfaces from surfaces whose distance is close to the

tolerance τ . For pixels with d ≥ τ or pixels which are not in the intersection of

the visibility masks, the matching cost is set to the maximum value of 1.

Since pixels from both visibility masks are considered, the estimated pose

P̂ is penalized for the non-explained parts of the visible surface of M̄ and also

for hallucinating its non-present parts. The function eVSD can be seen as an

extension of the Complement over Union (Sec. 4.3) calculated on the visibility

masks, where pixels in the intersection of the masks can have a non-zero cost.

1 The distance image can be readily computed from a depth image, which at each
pixel stores the Z coordinate of the closest scene surface.
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Input
dist. image

Rendered
dist. images

Object
masks

Visibility
masks

Matching
mask

DI D̄ X̄ V̄ ⊆ X̄ W ⊆ V̄ ∩ V̂

D̂ X̂ V̂ ⊆ X̂

Fig. 2. Example of distance images and masks that are employed in calculation of the
Visible Surface Discrepancy (eVSD). The smaller the distance, the darker the pixel in-
tensity in the distance image (pixels with unknown distances are black). Input distance
image DI captures a cup whose right part is occluded. The pose of the cup is ambigu-
ous – from the given view it is impossible to determine the position of the handle. The
matching mask W includes pixels at which the difference of the visible surface distance
is smaller than τ .

Visibility Masks The visibility mask V̄ is defined as a set of pixels where the

surface of M̄ is in front of the scene surface, or at most by a tolerance δ behind:

V̄ = {p : p ∈ XI ∩ X̄ ∧ D̄(p)−DI(p) ≤ δ}, (13)

where DI is the distance image of the test scene, XI = {p : DI(p) > 0} and

X̄ = {p : D̄(p) > 0} is a set of valid scene pixels and a set of valid object pixels

respectively. D(p) = 0 if the distance at pixel p in distance image D is unknown.

Similar visibility condition as in (13) is applied to obtain the visibility mask

V̂ of M̂. In addition to that, to ensure that the visible surface of the sought

object captured in DI does not occlude the surface of M̂, all object pixels p ∈
X̂ = {p : D̂(p) > 0} which are included in V̄ are added to V̂ , regardless of the

surface distance at these pixels. The visibility mask V̂ is defined as follows:

V̂ = {p : (p ∈ XI ∩ X̂ ∧ D̂(p)−DI(p) ≤ δ) ∨ p ∈ V̄ ∩ X̂}. (14)

The tolerance δ should reflect accuracy of the ground truth poses and also the

noise characteristics of the used depth sensor, i.e. it should increase with depth,

as the measurement error typically does [20]. However, in our experiments we

obtained satisfactory results even with δ fixed to 1.5 cm. Sample visibility masks

are shown in Fig. 3.
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Fig. 3. Sample visibility masks V̄ estimated with δ = 1.5 cm in an RGB-D image
from the dataset of Hinterstoisser et al. [5] using additional ground truth poses by
Brachmann et al. [13]. The top row shows the color image, the bottom row shows
masks overlaid on the depth image – the visibility mask V̄ is shown in green, the
occlusion mask X̄ \ V̄ in red.

4.5 Discussion on the Necessary Matching Condition

An estimated 6D object pose P̂ is considered matchable with the ground truth

pose P̄, if e(P̂, P̄;M, I) < t (Sec. 3.1). The choice of both the pose error func-

tion e and the threshold t largely depends on the target application. We discuss

two areas in which the 6D object pose estimation is of great importance and

which have different requirements on quality of the estimated pose – robotic

manipulation and augmented reality.

In robotic manipulation, where a robotic arm operates in the 3D space, the

absolute error of the estimated pose is important – especially in terms of mis-

alignment of the object surface. The requirements are different for augmented

reality applications, where the perceivable error is more relevant. This error de-

pends on perspective projection and thus the closer the object to the camera, the

more accurate the pose should be. Additionally, accuracy of the object position

in the X and Y axis of the camera coordinate system is more important than

accuracy in the Z axis, which represents the viewing direction of the camera.

Hinterstoisser et al. [5] adapt the threshold to the object size by requir-

ing eADD or eADI to be below 10% of the object diameter. Others use fixed

thresholds. Shotton et al. [18] require eTE to be below 5 cm and eRE below 5°.
Everingham et al. [1] require the eIOU score to be above 0.5.

The adaptive threshold of Hinterstoisser et al. [5] makes a little sense. This is

because the task is actually easier for larger objects since there are more pixels

available to estimate the pose. It is more reasonable to adapt the threshold to

the object distance from the camera (e.g. to the average distance of the visible

surface of the model in the ground truth pose). This reflects the noise charac-

teristics of the current RGB-D sensors (the depth measurement error increases

quadratically with depth [20]), and also allows to control the perceivable error
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which is important for the augmented reality applications. On the other hand,

for robotic manipulation, it is more appropriate to keep the threshold fixed.

For eVSD (Sec. 4.4), we propose to keep the threshold of the error fixed.

Depending on the target application, the misalignment tolerance τ , which is

used in calculation of eVSD, can be either fixed or adapted to the object distance

from the camera.

5 Comparison of Pose Error Functions

The discussed pose error functions were evaluated on a synthetic sequence (P0,

P1, . . . , P359) of 6D poses of a rotating cup (Fig. 4). Each pose Pi represents

a rotation by i° around axis perpendicular to the bottom of the cup. The poses

were evaluated against the ground truth pose P̄, which was set to be the rotation

by 90°. The handle of the cup is not visible in P̄ and thus its pose is ambiguous.

[P̄]M,I,ε was set to contain rotations from the range [55°, 125°], which represent

all poses from the sequence in which the handle is not visible. The set [Pi]M,I,ε

of the evaluated pose Pi was set to be the same as [P̄]M,I,ε if 55 ≤ i ≤ 125, and

to {Pi} otherwise.

The calculated errors are shown in Fig. 5. Note that the error e(Pi, P̄;M, I)

calculated by the ambiguity-invariant pose error functions (eVSD, eACPD, eMCPD,

eCOU) is close to zero for Pi ∈ [P̄]M,I,ε, which is the intuitive behavior.

Besides the synthetic sequence, we analyzed the pose error functions on the

dataset of Tejani et al. [12]. The estimated poses produced by a method of

the same authors were evaluated against the ground truth poses provided with

the dataset. For eVSD, the tolerances δ and τ were set to 1.5 cm and 10 cm

respectively. The threshold t was set to 0.5 for both eVSD and eCOU, and to 15%

of the object diameter for eADD and eADI. Fig. 6 discusses several examples of

the calculated errors.

0° 70° 140° 210° 280°

Fig. 4. Sample rendered depth images of a rotating cup (the rotation axis is perpen-
dicular to the bottom of the cup).
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Fig. 5. Comparison of the pose error functions on the rotating cup. X axis shows
rotation of the cup (from 0° to 359°). Y axis shows the calculated error.
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Fig. 6. Comparison of pose error functions on sample images from the dataset of Tejani
et al. [12]. The visualized errors were normalized by the threshold t and thus all ranges
from 0 to 1. The top row shows renderings of the object model in the estimated poses
(blue), which are overlaid on the cropped color component of the input RGB-D image.
(a,d) All errors are low for pose estimates that are close to the ground truth. (c,e)
eVSD and eCOU are sensitive to misalignment of object silhouettes, encouraging low
perceivable error. (f) Unlike eCOU, which operates only in the 2D space, eVSD penalizes
also inconsistency in depth – the estimated pose is too close to the camera in this case.
As expected, eADD produces non-intuitive values for these symmetric objects.

6 Conclusion

We defined two 6D object pose estimation problems – the 6D localization, in

which prior information about presence of known objects in a test image is

provided, and the 6D detection, in which no prior information is provided.

To measure error of an estimated 6D object pose w.r.t. the ground truth pose,

we proposed to use the Visible Surface Discrepancy (eVSD), which calculates the

error over the visible surface of the object model. It is inherently ambiguity-
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invariant, i.e. it treats the ε-indistinguishable poses as approximately equivalent.

Alternatively, if the sets of ε-indistinguishable poses are available, we proposed

to use the Average or the Maximum Corresponding Point Distance (eACPD,

eMCPD), which measure misalignment over the entire surface of the object model.

Determination of which estimated poses are correct is formulated as finding

a maximal matching in a bipartite graph, where edges connect the ground truth

poses with matchable estimated poses. The estimated poses are greedily assigned

to the matchable ground truth poses in the order of decreasing confidence. An

estimated pose is considered correct if the resulting matching includes an edge

connecting the pose with some ground truth pose.

We proposed to apply a fixed threshold t on the value of eVSD to decide if an

estimated object pose is matchable with the ground truth pose. The misalign-

ment tolerance τ , which is a parameter of eVSD, can be either fixed or adapted

to the object distance from the camera. For eACPD or eMCPD, we proposed to

keep the threshold t fixed or to adapt it to the object distance.

We suggested to measure performance of a 6D object pose estimator by the

Mean Recall (MR) in the 6D localization problem, and by the Mean Average

Precision (MAP) in the 6D detection problem.

The ongoing work is focused on a thorough validation of the proposed eval-

uation methodology, its application to data represented by sparse point clouds,

and on extension of the Visible Surface Discrepancy to a multi-camera setting.

Implementation of the discussed pose error functions and the performance

score functions is provided at: https : //github.com/thodan/obj pose eval
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