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Bio Google Scholar citations: 650, h-index: 8



Objects in computer vision tasks:
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Objects in computer vision tasks:
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Two variants:
1. 6D object localization – IDs of instances visible in the image provided (our focus).
2. 6D object detection     – No information about visible instances provided.
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Object pose estimation: input & output
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Main contributions of the thesis

ObjectSynth: Photorealistic image synthesis

BOP: Benchmark for 6D object pose estimationT-LESS: Dataset with texture-less objects

EPOS, HashMatch: Pose estimation methods



EPOS: Estimating 6D pose
of objects with symmetries

Hodaň, Baráth, Matas

CVPR 2020



Fitting 3D models to edge maps (Roberts’63, Lowe’91)

Template matching (Brunelli’09, Hinterstoisser’12, Hodan’15)

Correspondence-based (Lowe’99, Collet’11, Drost’10, Brachmann’14)
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Related work: Traditional methods

Input image,
detected edges

Two views at
a 3D polyhedral
descriptionFitting

3D models

Object 
templatesInput image

Input image
(with detections)

Templates
annotated
with 6D poses



Extending 2D object detection/segmentation with pose prediction:
- Classification into discrete viewpoints (Kehl’17, Sundermeyer’18)
- Regression of pose/viewpoint (Xiang’17, Li’18, Wang’19)

Predicting 2D-3D correspondences + PnP-RANSAC
(Rad and Lepetit’17, Tekin’18, Peng’19, Jafari’18, Zakharov’19, Peng’19, Park’19, ...)
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Related work: CNN-based methods

3D object model Visualization:
Color codes of locations in 
the 3D object model frame

Input image with 
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(figure from Park’19)



Approach 1: Predicting 2D projections of 3D keypoints
(Rad’17: BB8, Tekin’18: YOLO-6D, Peng’19: PVNet, …)
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Related work: 2D-3D correspondences
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Approach 1: Predicting 2D projections of 3D keypoints
(Rad’17: BB8, Tekin’18: YOLO-6D, Peng’19: PVNet, …)
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Related work: 2D-3D correspondences
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Approach 1: Predicting 2D projections of 3D keypoints
(Rad’17: BB8, Tekin’18: YOLO-6D, Peng’19: PVNet, …)
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Related work: 2D-3D correspondences
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Approach 1: Predicting 2D projections of 3D keypoints
(Rad’17: BB8, Tekin’18: YOLO-6D, Peng’19: PVNet, …)

In case of symmetries, methods compromise among possible 2D locations
or consider only the most confident one.
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Related work: 2D-3D correspondences
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Approach 2: Predicting 3D coordinates at each pixel
(Brachmann’14, Nigam’18, Jafari’18: iPose, Zakharov’19: DPOD, …)
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Related work: 2D-3D correspondences

3D model

Input image
with highlighted 

target objects



Approach 2: Predicting 3D coordinates at each pixel
(Brachmann’14, Nigam’18, Jafari’18: iPose, Zakharov’19: DPOD, …)
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Related work: 2D-3D correspondences
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Approach 2: Predicting 3D coordinates at each pixel
(Brachmann’14, Nigam’18, Jafari’18: iPose, Zakharov’19: DPOD, …)

In case of symmetries, methods compromise among possible 3D locations
or consider only the most confident one.
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Related work: 2D-3D correspondences
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EPOS: Object represented by surface fragments
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EPOS: Object represented by surface fragments
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EPOS: Multiple potential 2D-3D correspondences per pixel
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EPOS: Multiple potential 2D-3D correspondences per pixel
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The distribution of corresponding fragments is predicted at each pixel,
and the pixel is linked to possibly multiple high-confidence fragments.

21

EPOS: Multiple potential 2D-3D correspondences per pixel
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Potential 2D-3D correspondences are established by linking each pixel with
the predicted 3D locations on possibly multiple fragments.

A custom variant of the PnP-RANSAC algorithm (aware of the one-to-many 
2D-to-3D relationship) estimates poses from the potential correspondences.
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EPOS: Dense prediction of 2D-3D correspondences

RGB image
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EPOS: Qualitative evaluation (1/2)
Input RGB image Ground-truth poses Estimated poses
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EPOS: Qualitative evaluation (2/2)
Input RGB image Ground-truth poses Estimated poses
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Accuracy: EPOS outperformed all RGB methods and most RGB-D/D methods.

Speed: ~1.5 FPS (non-optimized implementation) = noticeably faster than 
traditional methods and comparable to other CNN-based methods.
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EPOS: Evaluation on BOP Challenge 2019 (bop.felk.cvut.cz)
Method Image T-LESS (AR) YCB-V (AR) LM-O (AR) Time (s)
EPOS RGB 0.40 0.68 0.39 0.63
Zhigang-CDPN-ICCV19 RGB 0.09 0.42 0.37 0.51
Sundermeyer-IJCV19 RGB 0.25 0.37 0.15 0.19
Pix2Pose-BOP-ICCV19 RGB 0.23 0.28 0.08 0.79
DPOD (synthetic) RGB 0.07 0.22 0.17 0.23

Pix2Pose-BOP-ICCV19 RGB-D - 0.67 -
Drost-CVPR10-Edges RGB-D 0.44 0.37 0.52 87.57
Félix&Neves-ICRA2017-IET2019 RGB-D 0.19 0.50 0.39 55.78
Sundermeyer-IJCV19+ICP RGB-D 0.41 0.50 0.24 0.87

Vidal-Sensors18 D 0.47 0.44 0.58 3.22
Drost-CVPR10-3D-Edges D 0.35 0.31 0.47 80.06
Drost-CVPR10-3D-Only D 0.38 0.33 0.53 7.70
Drost-CVPR10-3D-Only-Faster D 0.35 0.32 0.49 1.38



HashMatch: Hashing for
Efficient Template Matching

Hodaň, Haluza, Obdržálek, Matas, Lourakis, Zabulis

IROS 2015



Sliding window
over test RGB-D image
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HashMatch: The proposed method
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HashMatch: The proposed method
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HashMatch: The proposed method
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1. A grid or reference points is attached to the sliding window.
2. A triplet of points is described by surface normals and depth differences.
3. The descriptor is quantized and used to retrieve identifiers of templates 

with the same quantized descriptor.
4. The retrieved identifiers vote for potentially matching templates.
5. A small set of templates with most votes is passed to the next stage.
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HashMatch: Hashing

Triplets of grid points Triplet descriptor



Average image processing time (with 43740 templates of 15 objects):
● Exhaustive template matching: ~15s
● HashMatch: ~2s → sub-linear complexity in the number of templates
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HashMatch: Evaluation on BOP Challenge 2018

Used for robotic assembly in the DARWIN EU project



ObjectSynth: Synthesis of
Photorealistic Training Images

Hodaň, Vineet, Gal, Shalev, Hanzelka,
Connell, Urbina, Sinha, Guenter

ICIP 2019



GT annotation of a large number of real images is expensive.

Many object pose estimation methods rely on “cut & paste” synthetic images:

Lack of photorealism (inconsistent lighting, missing interreflections and shadows, 
unnatural object pose and context) enlarges the synthetic-real domain gap.
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Neural networks are great, but data hungry

CAT

CAT

Object segments cut from real
or rendered images
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3D object models rendered in 3D scene models by ray tracing:
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ObjectSynth: Reducing the gap with photorealistic images

Scene 1

LM objects RU-APC objects

Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Examples of rendered images rendered with the Arnold ray-tracer



Faster R-CNN achieves 11–24% higher mAP@.75IoU on real test images when 
trained on the ray-traced images.
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ObjectSynth: Evaluation

Photorealistic training images

Cut & paste baseline: 3D object 
models on random photographs
(in the same poses as in the 
photorealistic images)



● BlenderProc4BOP – an open-source and light-weight physically-based 
renderer which implements a refined version of ObjectSynth.

● 350K pre-rendered training images provided to the participants.
● 5th method (out of 26) was trained only on these images (with no real).
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Training images for BOP Challenge 2020



T-LESS: An RGB-D Dataset
with Texture-less Objects

Hodaň, Haluza, Obdržálek, Matas, Lourakis, Zabulis

WACV 2017



Well accepted (>200 citations) and still one of the more difficult datasets.
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The T-LESS dataset

10K test images from 20 scenes
with accurate ground-truth 6D poses

38K training images

30 objects with no significant texture or color,
with symmetries and mutual similarities in shape or size

CAD and reconstructed
3D object models



BOP: Benchmark for
6D Object Pose Estimation

Hodaň, Sundermeyer, Michel, Labbé, Brachmann,
Kehl, Buch, Kraft, Drost, Vidal, Ihrke, Zabulis, Sahin, 
Manhardt, Tombari, Kim, Obdržálek, Matas, Rother

ECCVW 2016, ECCV 2018, ECCVW 2020



SOTA unclear because:
- No standard evaluation methodology.
- New methods usually compared with only a few competitors on a few datasets.
- Scores on the most commonly used Linemod dataset have been saturated.

BOP includes:
- Evaluation methodology (task definition, new pose-error functions).
- 11 RGB-D datasets in a unified format + more are coming.
- Online evaluation system at bop.felk.cvut.cz (40K visits by 14K users since July’19).
- Public workshops and challenges at ICCV and ECCV conferences.
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Motivation: Unclear state of the art
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T. Hodaň, M. Sundermeyer, E. Brachmann, R. Kouskouridas, B. Drost, T.-K. Kim,
J. Matas, C. Rother, V. Lepetit, A. Leonardis, K. Walas, C. Steger , J. Sock
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R6D: International workshops on recovering 6D object pose

ICCV 2015 ECCV 2016 ICCV 2017

ECCV 2018 ICCV 2019
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BOP Challenge 2020

A detailed analysis at: bop.felk.cvut.cz
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Summary
EPOS (CVPR’20) – an RGB method applicable to a broad range of objects.

HashMatch (IROS’15) – efficient RGB-D template matching.

ObjectSynth (ICIP’19, RSSW’20) – synthesis of photorealistic training images.

T-LESS (WACV’17) – an RGB-D dataset with texture-less objects.

BOP (ECCVW’16, ECCV’18, ECCVW’20) – a benchmark for 6D object pose estimation.



Real-world demo: EPOS applied frame by frame on a video from a cell phone.
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Thank you!

http://www.youtube.com/watch?v=a_aM0N_ajy4

