Meta Technical University of Munich

Example FoundPose results on datasets HB, LM-O, IC-BIN, TUD-L, ITODD and T-LESS, showing that our method can handle a broad range or objects, including texture-less and symmetric ones. Each example shows the query image crop with the CNOS mask in white (top left), retrieved templates (middle row), matched patch descriptors of the contour of the

CAD-based object pose estimation

RGB image + K

CAD model

6DoF pose

1. How to quickly onboard a new object just from its CAD model (without any training)? 2. How to bridge CAD-to-image domain gap?

Existing methods (MegaPose, GenFlow, etc.) pre-train on large-scale, task-specific datasets

Instead, *FoundPose relies on the all-purpose* DINOv2 features integrated into classical *techniques* (BoW, PnP from 2D-3D corresp.), and achieves SOTA without any training

Contributions

- 1. Simple training-free method for CAD-based object pose estimation, achieving SOTA
- 2. Efficient template retrieval approach which requires 100X fewer templates than competitors and is robust to partial occlusion
- 3. Lightweight object representation which is fast to build and has a 25X lower memory footprint than competitors, enabling scaling to large numbers of objects
- 4. **Demonstrated importance of intermediate DINOv2 features** for handling symmetric and texture-less objects, also outperforming descriptors from other foundation models

Method overview

Online inference Offline object onboarding Instance mask from CNOS Query RGB image with model RGB-D templates known intrinsics Template retrieval by bag-of-words matching (Sec. 3.3) **Template-based object representation** (Sec. 3.2) DINOv2 patch descriptors BoW registered in 3D Bag-of-words (BoW) descriptors Patch descriptors Retrieved templates

FoundPose

Unseen Object Pose Estimation with Foundation Features

Evin Pınar Örnek, Yann Labbé, Bugra Tekin, Lingni Ma, Cem Keskin, Christian Forster, Tomas Hodan

Render ~400 RGB-D object templates 2. Extract DINOv2 patch descriptors 3. Register descriptors in 3D using the depth channel (for 2D-3D correspondences) 4. Calculate bag-of-words (BoW) descriptors

- Detect the target objects using CNOS (based on FastSAM)

- 5. Estimate the object pose by the PnP-RANSAC algorithm

Bridging CAD-to-real gap

Reliable correspondences between a *real query image* (left) and a *synthetic template* (right) can be established by a simple nearest-neighbor matching of DINOv2 features

Template images

Layer 13

2. Perspectively crop detected regions and extract DINOv2 patch descriptors 3. Retrieve similarly-looking templates (BoW vectors are compared by cosine similarity) 4. Establish 2D-3D correspondences by nearest-neighbor matching of DINOv2 descriptors

Layer 23

Handling symmetric and texture-less objects

Features from an intermediate DINOv2 layer yield consistent correspondences even when the semantic information is ambiguous due to symmetries or a lack of texture

Qualitative results

# N	lethod	Pose refinement	No train.	LM-O	T-LESS	TUD-L	IC-BIN	ITODD	HB	YCB-V	Average	Time
Coarse pose estimation:												
1 F 2 G 3 G 4 M 5 C 6 Z	FoundPose GigaPose [59] GenFlow [54] MegaPose [41] DSOP [75] ZS6D [3]		✓ × × × × ✓	39.6 29.9 25.0 22.9 <u>31.2</u> 29.8	$\begin{array}{r} \textbf{33.8} \\ \underline{27.3} \\ 21.5 \\ 17.7 \\ - \\ 21.0 \end{array}$	46.7 <u>30.2</u> 30.0 25.8 –	23.9 <u>23.1</u> 16.8 15.2 - -	20.4 <u>18.8</u> 15.4 10.8 - -	50.8 34.8 28.3 25.1 <u>49.2</u> -	45.2 29.0 27.7 28.1 <u>33.2</u> 32.4	37.2 <u>27.6</u> 23.5 20.8 - -	$\frac{1.7}{0.9}$ 3.8 15.5 -
With pose refinement (a single hypothesis):												
7 F 8 F 9 F 10 G 11 M	YoundPose YoundPose YoundPose Higapose [59] MegaPose [41]	Featuremetric MegaPose Feat. + MegaPose MegaPose MegaPose	<pre></pre>	39.5 55.4 55.7 <u>55.6</u> 49.9	$ \begin{array}{r} 39.6 \\ \underline{51.0} \\ \underline{51.0} \\ 54.6 \\ 47.7 \end{array} $	56.7 <u>63.3</u> <u>63.3</u> 57.8 65.3	28.3 43.0 <u>43.3</u> 44.3 36.7	26.2 34.6 <u>35.7</u> 37.8 31.5	58.5 <u>69.5</u> 69.7 69.3 65.4	49.7 66.1 66.1 <u>63.4</u> 60.1	$ \begin{array}{r} 42.6 \\ \underline{54.7} \\ 55.0 \\ \underline{54.7} \\ 50.9 \\ \end{array} $	$ \begin{array}{r} \frac{2.6}{4.4} \\ 6.4 \\ 2.4 \\ 31.7 \end{array} $
With pose refinement (5 hypotheses):												
12 F 13 F 14 F 15 G 16 G 17 M	YoundPose YoundPose YoundPose HigaPose [59] HenFlow [54] MegaPose [41]	Featuremetric MegaPose Feat. + MegaPose MegaPose GenFlow MegaPose	× × × × × ×	$\begin{array}{c} 42.0 \\ 58.6 \\ 61.0 \\ \underline{59.9} \\ 56.3 \\ 56.0 \end{array}$	43.6 54.9 57.0 57.0 52.3 50.7	$\begin{array}{c} 60.2 \\ 65.7 \\ 69.4 \\ 64.5 \\ \underline{68.4} \\ \underline{68.4} \end{array}$	$30.544.447.9\frac{46.7}{45.3}41.4$	$27.3 \\ 36.1 \\ 40.7 \\ 39.7 \\ 39.5 \\ 33.8 \\$	53.7 70.3 <u>72.3</u> 72.2 73.9 70.4	51.3 <u>67.3</u> 69.0 66.3 63.3 62.1	$\begin{array}{c} 44.1 \\ 56.8 \\ \textbf{59.6} \\ \underline{57.9} \\ 57.1 \\ 54.7 \end{array}$	$\frac{7.4}{11.2} \\ 20.5 \\ 7.3 \\ 20.9 \\ 47.4$
 SOTA on coarse pose estimation – FoundPose outperforms GigaPose by +10, GenFlow by +14 and MegaPose by +16 AR Significantly faster than MegaPose-Coarse (render & compare) 												

#	Method	D-M-D	T-LESS	TUD-L	IC-BIN	ITODD	HB	YCB-V	Average	Time	
	Backbones for extracting patch descriptors:										
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	DINOv2 ViT-L – layer 18 DINOv2 ViT-L – layer 23 DINOv2 ViT-S – layer 9 DINOv2 ViT-S – layer 11 SAM ViT-L [40] – layer 23 DenseSIFT – step size 7px S2DNet [23]	$\begin{array}{c} 39.6 \\ 23.2 \\ 34.0 \\ 22.8 \\ 2.2 \\ 3.2 \\ 0.8 \end{array}$	$\begin{array}{r} 33.8\\ 22.8\\ 31.6\\ 24.2\\ 12.8\\ 2.6\\ 1.2 \end{array}$	$\begin{array}{r} 46.7\\ 31.2\\ 42.7\\ 29.8\\ 9.2\\ 6.5\\ 0.8\end{array}$	$23.9 \\10.3 \\21.7 \\11.9 \\7.5 \\10.5 \\1.4$	$20.4 \\ 9.7 \\ 16.8 \\ 10.5 \\ 6.0 \\ 2.9 \\ 1.2$	$50.8 \\ 33.0 \\ 46.8 \\ 30.4 \\ 10.6 \\ 5.6 \\ 1.2$	$\begin{array}{r} 45.2\\ 34.0\\ 44.7\\ 36.4\\ 26.9\\ 22.2\\ 1.3\end{array}$	$\begin{array}{c} 37.2 \\ 23.5 \\ 34.0 \\ 23.7 \\ 10.7 \\ 7.6 \\ 1.1 \end{array}$	$1.7 \\ 1.5 \\ 1.3 \\ 1.3 \\ 3.4 \\ 1.4 \\ 1.8$	
	Template retrieval by matching cls token from layer 18 of DINOv2 ViT-L:										
8 9	Retrieval by cls token Retrieval by cls token with black bg.	$\begin{array}{c} 19.9 \\ 25.5 \end{array}$	$\begin{array}{c} 17.8\\ 26.2 \end{array}$	$\begin{array}{c} 24.6\\ 30.3 \end{array}$	$\begin{array}{c} 10.3\\ 16.7\end{array}$	$\begin{array}{c} 13.6\\ 13.6\end{array}$	$\begin{array}{c} 17.7\\ 29.3\end{array}$	$\begin{array}{c} 23.6\\ 34.4\end{array}$	$\begin{array}{c} 18.2\\ 25.1 \end{array}$	$\begin{array}{c} 1.6\\ 1.6\end{array}$	
	Other ablations:										
10 11	Pose given by the top matched template Ground-truth instead of CNOS masks	$\begin{array}{c} 20.3\\ 45.6\end{array}$	$\begin{array}{c} 18.5 \\ 53.1 \end{array}$	$\begin{array}{c} 23.0\\ 57.1 \end{array}$	$\begin{array}{c} 12.8\\ 30.6\end{array}$	12.4 –	19.6 _	$\begin{array}{c} 17.6 \\ 50.9 \end{array}$	17.7 _	1.0 _	
•	 Intermediate DINOv2 features noticeably outperform features from the last DINOv2 layer, SAM, CLIP, LoFTR, S2DNet, DenseSIFT 										

• +10 AR w.r.t. to the only other training-free method (ZS6D)

• BoW retrieval considerably outperforms CLS-based retrieval and reaches accuracy of MegaPose-Coarse while being 15X faster